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Abstract

Under a partly linear model we study a family of robust estimates for the regression
parameter and the regression function when some of the predictors take values on a Rieman-
nian manifold. We obtain the consistency and the asymptotic normality of the proposed
estimators. Simulations and an application to a real dataset show the good performance
of our proposal under small samples and contamination.

Non parametric estimation, Partly linear models, Riemannian manifolds, Robustness.

1 Introduction

Partly linear regression models (PLM) assume that the regression function can be modeled
linearly on some covariates, while it depends non parametrically on some others. To be more
precise, assume that we have a response yi ∈ IR and covariates (xi, ti) such that xi ∈ IRp, ti ∈
[0, 1] satisfying

yi = x
t
i β + g(ti) + εi 1 ≤ i ≤ n , (1)

where the errors εi are independent and independent of (x
t
i , ti). Since the introductory work

by ?, partly linear models have become an important tool in the modeling of econometric or
biometric data, combining the flexibility of non parametric models and the simple interpre-
tations of the linear ones. However, in many applications, some of the predictors variables
take values on a Riemannian manifold more than on Euclidean space and this structure of the
variables needs to be taken into account in the estimation procedure.

2 head one

In a recent paper ?, PLM are studied when the explanatory variables corresponding to the non
parametric component, take values on a Riemannian manifold and the potential application
of this model in an environmetric problem is explored. Unfortunately, as shown in Section 5,
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this approach may not work well in presence of a small proportion of observations that deviate
from the assumed model. One way to avoid this problem is to consider robust estimators that
can resist the effect of a small number of atypical observations. The goal of this paper is to
introduce resistant estimators for the regression parameter and the regression function under
PLM (1), when the predictor variable t takes values on a Riemannian manifold.

This paper is organized as follows. Section 3 gives a brief summary of the classical estima-
tors for this model and introduces the robust estimates. In Section 4, we study the consistency
and the asymptotic distribution of the regression parameter under regular assumptions on the
bandwidth sequence. Section 5 includes the results of a simulation study conducted in order
to explore the performance of the new estimators under normality and contamination. Also,
a robust cross validation procedure to select the smoothing parameter is considered. The ad-
vantages of the proposed method are also illustrated over a real data set, in Section 6. Proofs
are given in the Appendix.

3 The model and the estimators

Assume that we have a sample of n independent variables (yi,x
t
i , ti) in IRp+1 × M with

the same distribution as (y,x
t
, t), where (M,γ) is a Riemannian manifold of dimension d.

As in ? we consider (M,γ) a d−dimensional compact oriented and connected Riemannian
manifold without boundary. Note that in this case the injectivity radius of (M,γ) (injγM ) is
positive. Partly linear models assume that the relation between the response variable yi and
the covariates (x

t
i , ti) can be represented as

yi = x
t
i β + g(ti) + εi 1 ≤ i ≤ n , (2)

where the errors εi are independent and independent of (x
t
i , ti). Furthermore, we will assume

that ε has symmetric distribution.

3.1 Classical estimators

Denote φ0(τ) = E(y|t = τ) and φ(t) = (φ1(t), . . . , φp(t)) where φj(τ) = E(xij |t = τ) for

1 ≤ j ≤ p, then we have that g(t) = φ0(t)− φ(t)
t
β and hence, y − φ0(t) = (x− φ(t))

t
β + ε.

The classical least square estimator of β, β̂ls can be obtained minimizing

β̂ls = arg min
β

n∑
i=1

[(yi − φ̂0,ls(ti))− (xi − φ̂ls(ti))
t
β]2,

where φ̂0,ls and φ̂ls are non parametric kernel estimators of φ0 and φ, respectively. More

precisely, the non parametric estimators φ̂0,ls and φ̂j,ls of φ0 and φj can be defined as (see ?),

φ̂0,ls(t) =
n∑
i=1

wn,h(t, ti)yi and φ̂j,ls(t) =
n∑
i=1

wn,h(t, ti)xij (3)
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where wn,h(t, ti) = θ−1t (ti)K(dγ(t, ti)/hn)/[
∑n
k=1 θ

−1
t (tk)K(dγ(t, tk)/hn)]−1 with K : IR →

IR a non-negative function, dγ the distance induced by the metric γ and θt(s) the volume
density function on (M,γ). The bandwidth hn is a sequence of real positive numbers such
that limn→∞ hn = 0 and hn are smaller than injγM . For a rigorous definition of the volume
density function and the injectivity radius see (Besse, 1978) or ?.

The final least square estimator of g can be taken as ĝls(t) = φ̂0,ls(t) − φ̂ls(t)
t
β̂ls. The

properties of these estimators have been studied in ? while for Euclidean data, there is a vast
literature on leas square estimators for PLM see for example ?, ?, ? and ?.

3.2 Robust estimates

As in the Euclidean setting, the estimators introduced by ? are a weighted average of the re-
sponse variables. Hence, these estimates are very sensitive to large fluctuations of the variables
so that, the final estimator of β can be seriously affected by anomalous data. To overcome
this problem, ? considered two families of robust estimators for the regression function when
the explanatory variables ti take values on a Riemannian manifold (M,γ). The first family
combines the ideas of robust smoothing in Euclidean spaces with the kernel weights introduced
in ?. The second one generalizes to our setting the proposal given by ?, who considered robust
non parametric estimates using nearest neighbor weights, when the predictors t are on IRd.

As in Bibi (1978), we consider a class of resistent estimates based on a three-step robust
procedure under the partly linear model when some of the predictors take values on a Rieman-
nian manifold. This approach does not require any moments to the errors, as is based on a
natural extension of the conditional expectation to a setting where no moment conditions are
required, studied in ?. Denote by Ψ : IR → IR a strictly increasing, bounded and continuous
function and by F (y|t = τ) and Fj(x|t = τ), the conditional distribution functions of y and
xj given t = τ , respectively. Let φj(t) 0 ≤ j ≤ p be now any conditional location functionals
related to a robust smoother. More precisely, for each t ∈ M denote by φj(t) for 0 ≤ j ≤ p
the solution of

E

(
Ψ

(
y − φ0(τ)

σ0(τ)

)∣∣∣∣ t = τ

)
= 0 and E

(
Ψ

(
xj − φj(τ)

σj(τ)

)∣∣∣∣∣ t = τ

)
= 0 for 1 ≤ j ≤ p (4)

with σ0(τ) and σj(τ) for 1 ≤ j ≤ n are robust measure of conditional scale respect to the
conditional distribution of y|t = τ for j = 0 and xj |t = τ for 1 ≤ j ≤ p.

The three-step robust estimators are defined as follows:

Step 1: Estimate φj(t), 0 ≤ j ≤ p through a robust smoothing. Denote by φ̂j,r the

obtained estimates and φ̂r(t) = (φ̂1,r(t), . . . , φ̂p,r(t))
t

.

Step 2: Estimate the regression parameter by applying a robust regression estimate to
the residuals yi − φ̂0,r(ti) and xi − φ̂r(ti). Denote by β̂r the obtained estimator.

Step 3: Define the robust estimate of the regression function g as ĝr(t) = φ̂0,r(t) −

β̂
t

rφ̂r(t).
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Note that in Step 1, the regression functions correspond to predictors taking values in a
Riemannian manifold. Local M−type estimates φ̂0,r and φ̂j,r are defined in ? as the solution
of

n∑
i=1

wn,h(t, ti)Ψ

(
yi − φ̂0,r(t)

σ0,n(t)

)
= 0 and

n∑
i=1

wn,h(t, ti)Ψ

(
xij − φ̂j,r(t)

σj,n(t)

)
= 0 (5)

respectively, where the score function Ψ is strictly increasing, bounded and continuous and
σ0,n(τ) and σj,n(τ) 1 ≤ j ≤ p are local robust scale estimates. Possible choice for the score
function Ψ can be the Huber or the bisquare Ψ-function. The local robust scale estimates
σ0,n(τ) and σj,n(τ) 1 ≤ j ≤ p can be taken as the local median of the absolute deviations from
the local median (local MAD), i.e., the MAD (see ?) with respect to the distributions

Fn(y|t = τ) =
n∑
i=1

wn,h(τ, ti)I(−∞,y](yi) and Fj,n(x|t = τ) =
n∑
i=1

wn,h(τ, ti)I(−∞,x](xij).

(6)
respectively.

In Step 2, the robust estimation of the regression parameter can be performed by applying
to the residuals any of the robust methods proposed for linear regression. For example, we can
consider M-estimates (?) or GM-estimators (?). On the other hand, high breakdown point
estimates with high efficiency as MM-estimates may also be computed (? and ?).

Throughout the paper, we consider β̂r the solution of
n∑
i=1

ψ1

(
(r̂i − η̂

t
i β̂r)/sn

)
w1 (‖η̂i‖) η̂i = 0, (7)

with sn a robust consistent estimate of σε, r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti), ψ1 a score
function and w1 a weight function. The zero of this equation can be computed iteratively using
reweighting, as described for the location setting in [?, Chapter 2].

The estimator defined by ? corresponds to the choice Ψ(u) = u with the estimators of the
conditional distribution based on kernel weights defined in (6). Therefore, if we considered the
least square estimators of β in Step 2, we obtain the classical estimators proposed in ?. On the
other hand, when (M,γ) is IRd endowed with the canonical metric, the estimation procedure
reduces to the proposal introduced in Bibi (1978). Details on the algorithm use to compute
the robust non parametric estimators in Step 1 can be found in ?.

4 Asymptotic results

The theorems of this Section study the asymptotic behavior of the regression parameter esti-
mator of the PLM under standard conditions. Let U be an open set of M , we denote by Ck(U)
the set of k times continuously differentiable functions from U to IR. As in ?, we assume that
the image measure of P by t is absolutely continuous with respect to the Riemannian volume
measure νγ and we denote by f its density on M with respect to νγ .

Let σ0(τ) and σj(τ) for 1 ≤ j ≤ n be the MAD of the conditional distribution of y1|t = τ
for j = 0 and x1j |t = τ for 1 ≤ j ≤ n, respectively.
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4.1 Consistency

To derive strong consistency result of the estimate β̂r of β defined in Step 2 , we will consider
the following set of assumptions.

H1. Ψ : IR → IR is an odd, strictly increasing, bounded and continuously differentiable
function, such that uΨ′(u) ≤ Ψ(u) for u > 0.

H2. F (y|t = τ) and Fj(x|t = τ) are symmetric around φ0(τ) and φj(τ) and there are contin-
uous functions of y and x for each τ .

H3. M0 is a compact set on M such that:

i) The density function f of t, is a bounded function such that infτ∈M0 f(τ) = A > 0.

ii) inf
τ∈M0
s∈M0

θτ (s) = B > 0.

H4. The following equicontinuity condition holds

∀ε > 0, ∃δ > 0 : |z − z′| < δ ⇒ sup
s∈M0

|Gs(z)−Gs(z′)| < ε

when the function Gs(z) equals F (z|t = s) or Fj(z|t = s) for 1 ≤ j ≤ p.

H5. For any open set U0 of M such that M0 ⊂ U0,

i) f is of class C2 on U0.

ii) F (y|t = τ) and Fj(x|t = τ) are uniformly Lipschitz in U0, that is, there exists a
constant C > 0 such that |Gτ (z)−Gs(z)| ≤ C dg(τ, s) for all τ, s ∈ U0 and z ∈ IR,
when the function Gs(z) equals F (z|t = s) or Fj(z|t = s) for 1 ≤ j ≤ p.

H6. K : IR → IR is a bounded non negative Lipschitz function of order one, with compact
support [0, 1] satisfying

∫
IRd

uK(‖u‖)du = 0 and 0 <
∫
IRd
‖u‖2K(‖u‖)du <∞.

H7. The sequence hn is such that hn → 0 and nhdn/log n→∞ as n→∞.

H8. The estimator σj,n(τ) of σj(τ) satisfy σj,n(τ)
a.s.−→ σj(τ) as n → ∞ for all τ ∈ M0 and

0 ≤ j ≤ p.

Remark 4.1.1. AssumptionH1 is a standard condition in a robustness framework. Boundness
of the score function allows to derive the weak continuity of the robust conditional functionals
defined in (4) as shown in Theorem 2.2 of ?. Differentiability of the score function is needed in
order to obtain uniform consistency results over compact sets. Assumption H2 and the oddness
of the score function allow to identify φj for 0 ≤ j ≤ p. More precisely, these assumptions
guarantee Fisher–Consistency, i.e. the definitions introduce in (4) coincide with the respective
conditional expectations when they exist. The fact that θs(s) = 1 for all s ∈ M guarantees
that H3 holds for a small compact neighborhood of s. H4 and H5 are needed in order to
derive strong uniform consistency results (see ?). Assumption H6 and H7, restricts the class
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of kernel functions to be chosen and establishes conditions on the rate of convergence of the
smoothing parameters, which are standard in non parametric regression. It is easy to see
that Assumption H8 is satisfied, when we consider σj,n(τ) as the local median of the absolute
deviations from the local median.

Remark 4.1.2. In order to obtain the consistency of the estimators, we will need that the
regression parameter can be written as a functional on a distribution. More precisely, denote
by P the distribution of (ri,ηi) where ηi = xi − φ(ti) and ri = yi − φ0(ti) and let β(H) be a
regression functional, for the model u = vtβ+ε where (u, v) ∼ H and u and ε are independent.
Therefore, note that if r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti) and P̂n(A) = 1

n

∑n
i=1 IA(r̂i, η̂i), the

robust estimator defined in (7) can be written as β̂r = β(P̂n).

Theorem 4.1.1. Let P and β(H) defined in Remark 4.1.2 and assume that β(H) is continuous
in P and that it also provides Fisher-consistent estimates. Under assumptions H1 to H8 ,
we have that

a) |β̂r − β| a.s.−→ 0.

b) supτ∈M0
|ĝr(τ)− g(τ)| a.s.−→ 0.

4.2 Asymptotic distribution

In this Section, we assume that in Step 2 of the estimation procedure, the robust estimator
β̂r satisfies (7). More precisely, let ψ1 be a score function and w1 be a weight function, we
will derive the asymptotic distribution of the regression parameter estimates β̂r defined as a
solution of

n∑
i=1

ψ1

(
(r̂i − η̂

t
i β̂r)/sn

)
w1 (‖η̂i‖) η̂i = 0,

with sn a robust consistent estimate of σε, r̂i = yi − φ̂0,r(ti), η̂i = xi − φ̂r(ti). Denote by

ηi = xi − φ(ti) and ri = yi − φ0(ti). Note that ri − η
t
i β = εi.

To derive the asymptotic distribution of the regression parameter estimates, we will need
the following set of assumptions.

A1. ψ1 is an odd, bounded and twice continuously differentiable function with bounded
derivatives ψ′1 and ψ′′1 , such that the functions uψ′1(u) and uψ′′1(u) are bounded.

A2. E(w1(||η1||) η1|t1) = 0, E(w1(||η1||) ||η1||2) <∞ and A = E(ψ′1(ε/σε)w1(||η1||) η1η1
t)

is non singular.

A3. The function w1(u) is bounded, Lipschitz of order 1. Moreover, ϕ(u) = w1(u)u is also
a bounded and continuously differentiable function with bounded derivative ϕ′(u) such
that uϕ′(u) is bounded.

A4. The functions φj(t) for 0 ≤ j ≤ p are continuous with φ′j continuous in M .
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A5. φ̂j(t) the estimates of φj(t) for 0 ≤ j ≤ p have first continuous derivatives in M and

n1/4 sup
t∈M
|φ̂j(t)− φj(t)|

p−→ 0, for 0 ≤ j ≤ p, (8)

sup
t∈M
|∇φ̂j(t)−∇φj(t)|

p−→ 0, for 0 ≤ j ≤ p. (9)

where ∇ξ corresponds to the gradient of ξ.

A6. The estimator sn of σε satisfies sn
p−→ σε as n→∞.

Theorem 4.2.1. Under the assumptions A1 to A6 we have that

√
n(β̂r − β)

D−→ N(0, σ2εA
−1ΣA−1),

where A is defined in A2 and Σ = E(ψ2
1(ε/σε))E(w2

1(||η1||) η1η
t
1 ).

Remark 4.2.1. To prove the previous result, we will need an inequality for the covering
numbers of the class F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}. In the Appendix, we
include some results related to the covering number on a Riemannian manifold.

5 Simulation study

In this section, we report the results of a simulation study designed to evaluate the performance
of the robust procedure introduced in Section 3. The main objective of this study is to compare
the behavior of the classical and robust estimators for normal and contaminated samples. We
consider the cylinder endowed with the metric induced by the canonical metric of IR3. Due
to of the computational complexity of the robust procedure, we performed 500 replications of
independent samples of size n = 200. In the smoothing procedure, the kernel was taken as the
quadratic kernel K(t) = (15/16)(1− t2)2I(|x| < 1). The local M−estimate was computed with
bisquare score function, with constant 4.685, which gives a 95% efficiency. As initial estimate
in the iterative procedure to compute the local M−estimate, we have considered the local
median. For the regression parameter, we have considered a GM-estimators (7) with score
function on the residuals ψ1(r) = ψh,c(r) = max(−c,min(r, c)), i.e, the Huber function with
tunning constant c. In the simulation study, we considered two different tunning constants
c = 1.6 and c = 1.7 and weight function w1

w1(η) = W
[
((η − µη)/ση)2

]
(10)

where W (t) = ψh,χ1,0.975(t)/t while µη = median
1≤i≤n

(η̂i) and ση = mad
1≤i≤n

(η̂i)/0.6754 with η̂i =

xi − φ̂r(ti).

In the next section, we describe the robust cross validation procedure used in order to
obtain the robust estimates. To compute the classical estimators, the bandwidth was selected
using the classical cross validation described in ?. The distance dγ and the volume density
function for the cylinder were computed in ? and ?. We consider the following model:
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The variables (yi, xi, ti) for 1 ≤ i ≤ n are generated as

yi = 2 xi + (t1i + t2i − t3i)2 + εi and xi = sin(2t3i) + ηi

where ti = (t1i, t2i, t3i) = (cos(θi), sin(θi), si) with the variables θi following a uniform distribu-
tion in (0, 2π) and the variables si uniform in (0, 1), i.e., ti have support in the cylinder with
radius 1 and height between (0, 1).

The non contaminated case, denoted C0 corresponds to independent errors εi and ηi nor-
mally distributed with mean 0 and standard deviation 1 and 0.05, respectively. Besides, the
so-called contaminations C1 and C2, correspond to selecting a distribution in a neighbor-
hood of the central normal distribution and are defined as ε ∼ 0.9N(0, 1) + 0.1N(0, 25) and
ε ∼ 0.9N(0, 1) + 0.1N(5, 0.25), respectively. Also we consider the contamination denoted C3,
where we introduce artificially 10 observations of the variables x equal to 5 but we did not
change the response variables and the covariates t.

The contamination C1 which corresponds to inflating the errors will affect the variance of
the regression estimates, while C2 is an asymmetric contamination. The contamination C3

allows to study the behavior of the estimators under the presence of high leverage points.

5.1 Bandwidth Selection

To select the smoothing parameter there exist two commonly used approaches: L2 cross-
validation and plug-in methods. However, these procedures may not be robust. Their sensi-
tivity to anomalous data was discussed by several authors, see for example ?, ?, ?, ? and ?.
Under a non parametric regression model with carriers in an Euclidean space for spline-based
estimators, ? introduced a robust cross-validation criterion to select the bandwidth parameter.
Robust cross-validation selectors for kernel M-smoothers were considered in ?, ? and ?, under
a fully non parametric regression model. In the Euclidean setting, for partly linear model, a
robust plug-in procedure was studied in ? while for dependent observations, a robust cross-
validation criterion was considered in ?. When the variables belong in a Riemannian manifold,
a robust cross validation procedure was discussed in ? under a fully non parametric regression
model, while a classical cross-validation procedure under a partly linear models was considered
in ?.

We describe a robust cross-validation method to select the bandwidth in the case of partly
linear models that robustifies the proposal given in ? and generalizes the procedure given
in ?. The robust cross-validation method constructs an asymptotically optimal data-driven
bandwidth, and thus adaptive data-driven estimators, by minimizing

RCV (h) =
n∑
i=1

µ2n(ε̂i(h)) + σ2n(ε̂i(h)),

with ε̂i(h) = yi−φ̂0,−i,h(ti))−(xi−φ̂−i,h(ti))
t
β̃; φ̂0,−i,h(t) and φ̂−i,h(t) = (φ̂1,−i,h(t), . . . , φ̂p,−i,h(t))

denote the robust non parametric estimators computed with bandwidth h using all the data
expect the i−th observation and β̃ estimate the regression parameter by applying a robust
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regression estimate to the residuals yi − φ̂0,−i,h(ti) and xi − φ̂−i,h(ti). Besides, µn and σ2n
denote robust estimators of location and scale, respectively.

In the simulation study and in the real data example, we have consider µn as the median
and σn as the Huber τ−scale estimator. Also, the search for the bandwidth parameter was
performed over the following values of bandwidths 0.1, 0.25, 1, 1.5, 2.5, 4, 5, 6.5.

The asymptotic properties of data-driven estimators require further careful investigation
and are beyond the scope of this paper.

5.2 Simulation results

Table 5.1 shows the mean, standard deviations, mean square error for the regression estimates
of β and the mean of the mean square error of the regression function g over the 500 replica-
tions for the considered model. We denote with ls, r, 1.6 and r, 1.7 the classical and robust
estimators with tuning constants c = 1.6 and c = 1.7, respectively. Figure 5.1 shows the box-
plot of the regression parameter estimators. Since the results are very similar for the robust
estimators using different tuning constants, in the figure, we only report the results for the
robust estimators forc = 1.6.

mean(β̂ls) sd(β̂ls) MSE(β̂ls) MSE(ĝls)
C0 2.0732 0.1445 0.0262 0.2396
C1 1.8789 1.7592 3.1095 20.4485
C2 1.8722 1.7975 3.2475 45.9719
C3 0.2806 0.0804 2.9627 1.4988

mean(β̂r,1.6) sd(β̂r,1.6) MSE(β̂r,1.6) MSE(ĝr,1.6)

C0 2.0646 0.1524 0.0274 0.2431
C1 2.0198 0.2303 0.0534 0.4897
C2 2.0109 0.2540 0.0646 1.3580
C3 1.9563 0.2318 0.0557 0.3635

mean(β̂r,1.7) sd(β̂r,1.7) MSE(β̂r,1.7) MSE(ĝr,1.7)

C0 2.0458 0.1569 0.0267 0.2717
C1 2.0151 0.2375 0.0566 0.3794
C2 1.9997 0.3082 0.0950 2.2173
C3 1.9468 0.2272 0.0544 0.3652

Table 5 Performance of regression parameter and the regression functions under the different contaminations.
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Figure 5. Boxplot of a) β̂ls the classical estimators and b) β̂r,1.6 the robust estimators with tuning constant

c = 1.6 under the different contaminations.

The simulation results confirm the inadequate behavior of the classical estimators under
the considered contaminations. The robust estimators of the regression function introduced
in this paper show only a small lack of efficiency under normality. Under C1, C2 and C3, the
results obtained with the classical estimators are not reliable giving larger mean square errors
obtained that those the robust procedure. In Table 4.1, we can observe that the contamination
C2 not only affect the classical estimators of the regression function, but also for the robust
ones for both tuning constants. In particular under this contamination, the mean square error
both for the classical regression estimator or the classical regression function estimator are of
order 125 and 190 times larger than in the non contaminated setting. However, for the robust
estimators with c = 1.6, the mean square error for the regression estimator and the regression
function estimator increased 2.5 and 5.5 times than the non contaminated case, respectively.
Under the contamination C3, we can observe how the high leverage points affect the bias of
the classical regression estimators. These extreme behaviors of the classical estimators show
their inadequacy when one suspects that the sample can contains outliers. The results for the
robust estimators using different tuning constants are quite similar.

6 Real Example

The solar insolation is the amount of electromagnetic energy or solar radiation incident on
the surface of the earth. This variable measures the duration of sunlight in seconds. In the
automatic stations, the World Meteorological Organization defines insolation as the sum of
time intervals in which the irradiance exceeds the threshold of 120 watts per square meter.
The irradiance is direct radiation normal or perpendicular to the sun on Earth’s surface. The
values of the insolation in a particular location depend of the weather conditions and the sun’s
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position on the horizon. For example, the presence of clouds increases the absorption, reflection
and dispersion of the solar radiation. Desert areas, given the lack of clouds, have the highest
values of insolation on the planet. More details about insolation can be seen in ?.

As commented above, the isolation is related with the weather conditions. In particular,
to illustrate the proposed estimators, we will analyze the relation between the insolation,
the humidity, the direction and the speed of the wind. We consider a data set available at
http://meteo.navarra.es/. This data consists on the daily average of relative humidity, speed
and direction of the wind and the insolation. The direction’s wind was measured with the
point zero in the north direction and the wind’s speed was measured in meters per second.
The recorded data were measured daily in the automatic meteorologic station of Pamplona-
Larrabide GN, in Navarra, Spain during the year 2004. In our study, we selected a random
sample from this dataset.

In Figure 5.1, we can see that the humidity and the insolation follow a lineal relation except
for the points contained in the ellipse on the left of the plot. Therefore, we consider a partly
lineal model to explain the insolation, as a linear function of the humidity and a non parametric
function of the speed and direction of the wind. Note that, the variables corresponding to the
wind to be modeled non parametrically, belong to a cylinder. In the smoothing procedure, we
choose the quadratic kernel K(t) = (15/16)(1 − t2)2I(|x| < 1). The robust estimators of the
parameter and the regression function were computed with the same scores and the weight
functions that we consider in the simulation study. For the robust estimators, the bandwidth
was selected using the robust cross validation procedure described in Section 4.1. For the
classical estimators, a least square cross validation described in ? was considered.

Figure 6 Scatter plot between the insolation and humidity. The dots in the ellipse correspond to the potential

outliers.
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In a first step, we apply the classical and robust methods to obtain an estimator of the
regression parameter using all the data. The obtained results are β̂ls = −1032.869 and β̂r =
−1246.856. Also, based in the asymptotic results obtained in Theorem 3.2.1, we calculate
confidence intervals with level 0.95 estimating the unknown quantities. The result of the
classical confidence interval is CCI0.05(β) = (−1229.9451 − 835.7935) while that based in
the robust estimation RCI0.05(β) = (−1453.658,−1040.053). We observe a shift between the
classical and robust intervals that may be due to the effect of the observations with low values
of humidity. For that reason, we compute the classical estimator using all the data except the
potential outliers obtaining β̂ls = −1294.620 with related confidence interval CCI0.05(β) =
(−1502.983,−1086.257) giving values closer to those of the robust procedure. It is clear that,
if we estimate the regression parameter with the classical approach when the dataset have
outliers, the conclusions can be misleading. For example, with the classical estimator computed
with all the data, the hypothesis that β = −1000 is not rejected, while the conclusions with the
classical estimator without the outliers or the robust estimators with all the data are reversed,
rejecting the null hypothesis.
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A Appendix

A.1 Proof of Theorem 4.1.1.

a) Since Remark 4.1.2, it is suffice to prove that Π(P̂n, P )
a.s.−→ 0 where Π stands for the Prohorov

distance. Thus, we will show that for any bounded and continuous function f : IRp+1 → IR
we have that |E

P̂n
f − EP f |

a.s.−→ 0.

Given ε > 0, we have the bound

|E
P̂n
f − EP f | ≤

1

n

n∑
i=1

|f(ri + (φ0(ti)− φ̂0(ti)),ηi + (φ(ti)− φ̂(ti)))− f(ri,ηi)|IC(ri,ηi, ti)

+
1

n

n∑
i=1

ICc(ri,ηi, ti)‖f‖∞

where C1 ⊂ IRp+1 andM0 ⊂M are compact sets that P (C) > 1−ε/(4‖f‖∞) with C = C1×M0.

Using Theorem 3.3 of ?, we have that

sup
t∈M0

|φ̂j,r(t)− φj(t)|
a.s.−→ 0 (A.1)



for 0 ≤ j ≤ p. From this fact and the Strong Law of Large Numbers, we have that there exists
a set ℵ ⊂ Ω such that P (ℵ) = 0 and for any ω 6∈ ℵ we have that (A.1) holds and

1

n

n∑
i=1

ICc(ri,ηi, ti)→ P (Cc).

Let C̄1 the closure of a neighborhood of radius 1 of C1.The uniform continuity of f on C̄1

implies that there exists δ such that max1≤j≤p+1 |uj − ui|, u, v ∈ C̄1 entails |f(u)− f(v)| ≤ ε
2 .

Thus, we have that for ω 6∈ ℵ and n large enough max0≤j≤p supt∈M0
|φ̂j,r(t) − φj(t)| < δ so

that, for 1 ≤ i ≤ n, we obtain that

|f(ri + (φ0(ti)− φ̂0(ti)),ηi + (φ(ti)− φ̂(ti)))− f(ri,ηi)| ≤
ε

2
.

concluding the proof.

b) Follows inmediately from (A.1) and a).

A.2 Entropy number

The main objective of this Section is to obtain an upper-bound to the entropy number of the
class of functions F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}. The covering number
N(δ,F , ‖ · ‖) is the minimal number of balls, {ξ : ‖ξ − η‖ < δ} of radius δ needed to cover the
set F . The entropy number is the logarithm of the covering number. This upper-bound will
be used to obtain the asymptotic distribution of the regression parameter. Several authors
have studied bounds to the covering numbers for different sets, see for example ?, ? and
?. In particular, ? obtained an upper-bound for the covering number of F(M) when M is
a bounded, convex subset of IRd. For the convenience of the reader, we have included the
following remark (see ?).

Remark A.1. Let N(δ) be the minimal number of balls with radius δ needed to cover (M,γ).
A δ-filling in M is a maximal family of pairwise disjoint open balls of radius δ contained in
M . We denote by D(δ) the maximum number of such balls. Is easy to see that N(2δ) ≤ D(δ).
Let diam(M,γ) be the diameter of (M,γ) and consider κ ∈ IR such that Ricc(M,γ) ≥ (d − 1)κ
where Ricc(Mγ) is the Ricci curvature and d the dimension of M . For example, if γ is an
Einstein metric’s with scalar curvature 2(d − 1)κ then the inequality is attained. Note that
if κ > 0 since Myers’s Theorem ?, (M,γ) is a compact manifolds with diam(M,γ) ≤ π/

√
κ.

Since M is compact there exists κ with this property. Denote by V κ(r) the volume of a ball
of radius r in a complete, simply connected Riemannian manifold with constant curvature κ.
By the Theorem of Bishop (see ?) we know that V ol(B(x,r))

V κ(r) is a non increasing function where

B(x, r) = {z ∈M : dγ(x, z) ≤ r} is the geodesic ball centered in x with radius r. Note that, M
is the closure of B(x, diam(M,γ)) for any x ∈ M . If {B(a1,

δ
2), . . . , B(aD,

δ
2)} with D = D( δ2)

is a δ
2−filling then,

N(
δ

2
) ≤ V ol(M)

inf1≤i≤D V ol(B(ai,
δ
2))
≤
V κ(diam(M,γ))

V κ( δ2)
.
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Therefore N(δ) ≤ C(diam(M,γ), κ)δ−d.

Lemma A.1. Let F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1}, then the covering
number for the supremum norm of F(M) that we denote by N(δ,F(M), ‖ · ‖∞) satisfies that
logN(δ,F(M), ‖ · ‖∞) < Aδ−d.

Proof of Lemma A.1. Let A = {B(a1, δ), . . . , B(aN , δ)} be a covering of M by open balls of
radius δ. By the remark above, we may assume that N ≤ C(diam(M,γ), κ)δ−d. Also, we can
choose the covering A such that B(ai, δ) ∩ B(ai+1, δ) 6= ∅ for 1 ≤ i ≤ N − 1 and ai 6= aj for

1 ≤ i, j ≤ N . Let ξ ∈ F(M), we define the function ξ̃ =
∑N
i=1 δ

[
ξ(ai)
δ

]
IDi where D1 = B(a1, δ),

Di = B(ai, δ)\ ∪i−1j=1 B(aj , δ) and [a] denotes the integer part of a.

Let x ∈ M and 1 ≤ k ≤ N such that x ∈ Dk, then we have that |ξ̃(x) − ξ(x)| ≤ |ξ̃(x) −
ξ(ak)|+ |ξ(ak)− ξ(x)|. Since ξ̃(ak) = ξ̃(x) and ξ(ak) = ξ̃(ak) + δ( ξ(ak)δ − [ ξ(ak)δ ]) = ξ̃(ak) + δB

with 0 ≤ B < 1 and the fact that ‖∇ξ‖ ≤ 1, we have that |ξ̃(x)− ξ(x)| ≤ 2δ.

For the first value ξ̃(a1) of a generic function ξ, we have 4[1δ ]+1 possibilities since |ξ̃(a1)| ≤ 1.
Using that,

|ξ̃(ak)− ξ̃(ak−1)| ≤ |ξ̃(ak)− ξ(ak)|+ |ξ(ak)− ξ(ak−1)|+ |ξ(ak−1)− ξ̃(ak−1)| ≤ 6δ.

We get that, for each value of ξ̃(ak−1) we only have 13 possibilities to choose ξ̃(ak). Then, it
is easy to verify that

N(2δ,F(M), ‖ · ‖∞) ≤ (4[
1

δ
] + 1)13N .

concluding the proof.

Remark A.2. Since N(δ,F(M), L2(Q)) ≤ N(δ,F(M), ‖ · ‖∞), Lemma A.1 entails that the
covering number of F(M) satisfies, logN(δ,F(M), L2(Q)) < Aδ−d.

A.3 Proof of Theorem 4.2.1.

Using a Taylor expansion of order one around β̂r, we get that Sn = An(β̂r − β) with

Sn =
1

n

n∑
i=1

ψ1

(
(r̂i − η̂

t
i β)/sn

)
w1 (‖η̂i‖) η̂i

An =
1

n

n∑
i=1

ψ′1

(
(r̂i − η̂

t
i β̃)/sn

)
w1 (‖η̂i‖) η̂iη̂ti .

where β̃ is an intermediate point between β and β̂r. Analogous arguments to those used in

Lemma 2 in Bibi (1978) allow to show that An
p−→ A where A is defined in A2.

Since
√
n
n

∑n
i=1 ψ1 (εi/σε)w1 (‖ηi‖)ηi is asymptotically normally distributed with covari-

ance Σ, it will enough to show that

√
n [Sn −

1

n

n∑
i=1

ψ1 (εi/sn)w1 (‖ηi‖)ηi]
p−→ 0, (A.2)
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√
n [

1

n

n∑
i=1

ψ1 (εi/sn)w1 (‖ηi‖)ηi −
1

n

n∑
i=1

ψ1 (εi/σε)w1 (‖ηi‖)ηi]
p−→ 0. (A.3)

We first prove (A.2). Using a Taylor expansion of order two, we have that the following
decomposition.

√
n[Sn −

1

n

n∑
i=1

ψ1 (εi/sn)w1 (‖ηi‖)ηi] =
5∑
i=1

Sni

with

Sn1 =

√
n

n

n∑
i=1

ψ′1 (εi/sn) [γ̂t(ti)β − γ̂0(ti)]w1 (‖ηi‖)ηi

Sn2 =
sn
√
n

n

n∑
i=1

ψ1 (εi/sn) [w1 (‖η̂i‖) η̂i − w1 (‖ηi‖)ηi]

Sn3 =
sn
√
n

n

n∑
i=1

[ψ1

(
r̂i − η̂

t
i β/sn

)
− ψ1 (εi/sn)]w1 (‖η̂i‖) [η̂i − ηi]

Sn4 =

√
n

2n

n∑
i=1

ψ′′1 (ςi/sn) [γ̂t(ti)β − γ̂0(ti)]2w1 (‖η̂i‖)ηi

Sn5 =

√
n

n

n∑
i=1

ψ1 (εi/sn) [γ̂t(ti)β − γ̂0(ti)][w1 (‖η̂i‖)− w1 (‖ηi‖)]ηi,

where γ̂j(t) = φ̂j(t)− φj(t) for 0 ≤ j ≤ n and γ̂(t) = (γ̂1, . . . , γ̂n)
t

. By A3, A5 and A6 is easy

to see that ‖Sin‖
p−→ 0 for i = 3, 4, 5.

Let

J (j)
1n (σ, ξ) =

√
n

n

n∑
i=1

f
(j)
1,σ,ξ(ri,ηi, ti)

=

√
n

n

n∑
i=1

ψ′1

(
ri − ηti β

σ

)
ξ(ti)w1 (‖ηi‖) (ηi)j

J (j)
2n (σ, ξ) =

√
n

n

n∑
i=1

f
(j)

2,σ,ξ(ri,ηi, ti)

=
σ
√
n

n

n∑
i=1

ψ1

(
ri − ηti β

σ

)
[w1 (‖ηi + ξ‖) (ηi + ξ(ti))j − w1 (‖ηi‖) (ηi)j ]

Therefore, it remains to show that J (j)
1n (sn, γ̂s)

p−→ 0 and J (j)
1n (sn, γ̂)

p−→ 0 for 0 ≤ j, s ≤ p.
From now on, we will omitted the superscript j for the sake of simplicity.

Let F(M) = {ξ ∈ C1(M) : ‖ξ‖∞ ≤ 1 ‖∇ξ‖∞ ≤ 1} and consider the classes of functions

F1 = {f1,σ,ξ(r,η, t) σ ∈ (σε/2, 2σε) ξ ∈ F(M)}
F2 = {f2,σ,ξ(r,η, t) σ ∈ (σε/2, 2σε) ξ = (ξ1, . . . , ξp), ξs ∈ F(M)}
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Note that, the independence of εi and (xi, ti), A2 and the fact that the errors ε have symmetric
distribution imply that E(f(ri,ηi, ti)) = 0 for any f ∈ F1 ∪ F2. As in Bibi (1978), it is easy
to see that the covering number of the classes F1 and F2 satisfy

N(C1ε,F1, L
2(Q)) ≤ N(ε,F(M), L2(Q)) N(ε, (σε/2, 2σε), | · |)

N(C2ε,F2, L
2(Q)) ≤ Np(ε,F(M), L2(Q)) N(ε, (σε/2, 2σε), | · |)

where Q is any probability measure. From Remark A.2 we get that the covering number of
F(M) satisfies that logN(ε,F(M), L2(Q)) < Aε−d. Therefore, the classes F1 and F2 have
finite uniform-entropy. For 0 < δ < 1, consider the subclasses F1,δ and F2,δ of F1 and F2

respectively, defined by,

F1,δ = {f ∈ F1 ξ ∈ F(M), ‖ξ‖∞ < δ}
F2,δ = {f ∈ F2 ξ = (ξ1, . . . , ξp), ξs ∈ F(M), ‖ξs‖∞ < δ}

For any ε > 0, let 0 < δ < 1 from A5 and A6, we obtain that for n large enough P (sn ∈
(σε/2, 2σε)) > 1− δ/2 and P (γ̂s ∈ F(M) and ‖γ̂s‖∞ < δ) > 1− δ/2 for 0 ≤ s ≤ p.

Then, the maximal inequality for covering numbers entails that for 0 ≤ s ≤ p

P (|J1n(sn, γ̂s)| > ε) ≤ P (|J1n(sn, γ̂s)| > ε; sn ∈ (σε/2, 2σε); γ̂s ∈ F(M) and ‖γ̂s‖∞ < δ) + δ

≤ P

(
sup
f∈F1,δ

∣∣∣∣∣
√
n

n

n∑
i=1

f(ri,ηi, ti)

∣∣∣∣∣ > ε

)
+ δ

≤ 1

ε
E

(
sup
f∈F1,δ

∣∣∣∣∣
√
n

n

n∑
i=1

f(ri,ηi, ti)

∣∣∣∣∣
)

+ δ

≤ 1

ε
G(δ,F1) + δ

where G(δ,F) = supQ
∫ δ
0

√
1 + logN(ε‖F‖Q,2,F , L2(Q))dε. Using that F1 satisfies the uniform–

entropy condition we get that limδ→0 G(δ,F1) = 0, therefore S1n
p−→ 0. Similarly arguments

considered for J2n(sn, γ̂) and the class F2 to obtain that S2n
p−→ 0.

The proof of (A.3), follows using analogous arguments that those considered in (A.2).
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