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1 Introduction

Testing is both technically and economically an important part of high quality
software production. It has been estimated that testing accounts for half of the
expenses in software production. Much of the testing is done manually or using
other labor-intensive methods. It is thus vital for the software industry to de-
velop efficient, cost effective, and automatic means and tools for software testing.
Researchers have proposed several methods over years to generate automatically
solution which have different drawbacks. This study examines automatic soft-
ware testing optimization by using genetic algorithm approaches. This study
will cover two approaches: a) obtain the sequence of regression tests that cover
the greatest amount of code and b) once it is achieved another genetic algorithm
will eliminate tests cases that cover the same section of code on the basis of still
get the maximum code coverage. The overall aim of this research is to reduce
the number of test cases that need to be run with the greatest amount of code
covered.

Regression testing is expensive but an essential activity in software main-
tenance. Regression testing attempts to validate modified software and ensure
that the modified parts of the program do not introduce unexpected errors. It
executes an existing test suite on a changed program to assure that the pro-
gram is not adversely affected by unintended amendments[1]. The time used
for regression testing can be assumed approximately half of the software main-
tenance activities. However, through the use of an effective prioritization se-
quence, testers can reorder(or eliminate) the test cases to reduce the time and
cost in the system, allowing corrections to be made earlier and raising overall
confidence that the software has been adequately tested. One concern in regres-
sion testing is the effectiveness of test suites in finding new faults in successive
program versions. A regression test selection technique may help us to select
an appropriate number of test cases from this test suite.

Many automatic test case generators have been developed and many classical
searching methods have been used to derive test case. However, these techniques
work only for continuous function (while most program domains are of discon-
tinuous spaces). This is where Evolutionary Algorithms steps in, such as those
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using Genetic Algorithms GA. GAs are heuristic search techniques which are
able to search a discontinuous space. Evolutionary Testing is a promising ap-
proach to entirely automate test case design. It can be used to generate test
cases for structural testing. In some projects[2] [4] a GA based test data gen-
eration is presented. However, we will not afect the test data input or try to
create an automatic generator of tests cases [3].

The proposed GA is applied to different types of software systems small
programs with different complexity. Results compared to random testing showed
that genetic algorithms can be used effectively in automatic software testing to
generate test data for unit testing.

2 Algorithm

This study will apply genetic algorithms (GA) to solve two aproaches of testing
automation:

1. GA to obtain the sequence of regression tests that cover the greatest
amount of code (GA to increase code coverage).

2. GA to find the minimal secuence of regression tests that cover the greatest
amount of code (GA to get minimal funtional test suite).

The following figure 1 and figure 4 show theese two main aproaches:

Figure 1: GA to increase code coverage
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Figure 2: GA to get minimal functional test suite

Before going furter we will describe the Genetic Algorithm in a very light
way, in order to avoid knowledge gaps.

Genetic algorithm is a population-based search method. Genetic algorithms
are acknowledged as good solvers for tough problems. Genetic algorithms re-
quire several parameters including the following[1]:

1. Maximum number of generations, G,

2. Population size, P,

3. Crossover rate, pc,

4. Mutation rate, pm,

5. Convergence criterion.

There are two main concepts in genetic algorithm: crossover and mutation.
Crossover : A binary variation operator is called recombination or crossover.

This operator merges information from two parent genotypes into one or two
offspring genotypes. Similarly to mutation, crossover is a stochastic operator:
the choice of what parts of each parent are combined, and the way these parts
are combined, depends on random drawings. The principle behind crossover is
simple: by mating two individuals with different but desirable features, we can
produce an offspring which combines both of those features.
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child_1 = parent_1(:size-1)/2)

\\ remove all duplicated genotypes from in parent_2

\\ that match genotypes found in child_1

new_child = parent_2 + child_1

Mutation: A unary variation operator is called mutation. It is applied to
one genotype and delivers a modified mutant, the child or offspring of it. In
general, mutation is supposed to cause a random unbiased change. Mutation
has a theoretical role: it can guarantee that the space is connected.

child_value = parent[random_index_1]

\\ switch two genotypes randomly

children_pop[random_index] = children_pop[random_index_2]

children_pop[random_index_2] = child_value

The Figure 1 shows the algorithm for the first problem : GA to obtain
the sequence of regression tests that cover the greatest amount of code (GA to
increase code coverage). This algorithm will execute the following steps:

1. Check if we have reach the max number of iteration. If true stop the
execution else continue with the execution of the algorithm.

2. Get clean source code of SW project to test.

3. Build SW project (for codecoverage).

4. Based on Mutation and Cross-reference generate new gen.

5. Map gen to tests: Map the chromosome numbers to specific tests.

6. Run tests.

7. Get code coverage percentage.

8. Save the chromosome and its code coverage into a history file. Also the
previous code coverage and chromosome is saved into a history file.

9. Current code coverage is ¿= GOAL? . If true Stop execution else back to
begining.

This algorithm try to generate a sequence of tests that maximaze the code
coverage. The aproach will not be valid if we have duplicated tests. A duplicated
functional tests will not increase the code coverage. The kind of tests that we
will need to use are functional tests.

The Figure 4 shows the algorithm for the second problem: GA to find the
minimal secuence of regression tests that cover the greatest amount of code (GA
to get minimal funtional test suite ). This algorithm will execute the following
steps:

1. Check if we have reach the max number of iteration. If true stop the
execution else continue with the execution of the algorithm
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2. Get clean source code of SW project to test.

3. Build SW project (for codecoverage).

4. Append empty test to the chromosome.

5. Start only mutation of empty tests with any other tests on the chromo-
some.

6. Strip chromosome: Remove latest test.

7. Map gen to tests: Map the chromosome numbers to specific tests.

8. Run tests.

9. Get code coverage percentage.

10. Save the chromosome and its code coverage into a history file. Also the
previous code coverage and chromosome is saved into a history file.

11. Current code coverage is ¿= GOAL?. If true Stop execution else back to
begining.

This GA will try to minimize the number of tests that execute the same
portion of the code. Thiw will reduce the total amount of time of the regression
test suite.

The complete source code and history of development is detailed on the git
repository:

https://github.com/VictorRodriguez/yaact

3 Results

After doing multiple iterations on the GA for optimizaton we realize that the
code coverage was inotincreasing no matter how many iterations we could test
our solution

Figure 3: Solution A: GA to increase code coverage
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The same problen hapend with the secind GA aproach. After many itera-
tiosn we stil get that the same number of test cases with maximum level of code
covefage

Figure 4: Solution B: GA to get minimal functional test suite

4 Conclusion

In Conclusion, genetic algorithms will not solve all testing needs in all sys-
tems.This solution does not apply for all SW products. It requires a level of com-
plexity (still not defined) on the SW product and their integration/application
tests suites. It was discovered that in order to see an increase in code coverage,
of the test suite used, there must be a development of new test cases. This
happens because each time tests are executed the same code is being exercised.

This approach will not affect the following tests suites :

1. Unit tests

2. Feature Test

This approach might affect the following tests suites :

1. Integration/compatibility tests

2. Performance benchmarks

3. Stress tests

4. Longevity tests
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