
Poster Template
Author:
MD. BAKIBILLA MATUBBAR
Last Updated:
9 months ago
License:
Creative Commons CC BY 4.0
Abstract:
Easy Colorful Design Poster

\begin
Discover why over 20 million people worldwide trust Overleaf with their work.
\begin
Discover why over 20 million people worldwide trust Overleaf with their work.
\documentclass{a0poster}
\usepackage[margin=0cm, paperwidth=90cm, paperheight=120cm]{geometry}
\usepackage{poster}
\begin{document}
\begin{center}
\colorbox{nottblue!100}{%
\begin{minipage}[t]{\textwidth} % Adjusted vertical alignment
\vspace{0.8em} % Add vertical space
\begin{center}
{\fontsize{85pt}{85pt}\selectfont\textbf{\textcolor{white}{Unraveling the Dual Nature of Nonlinear Absorption under Varying Laser Intensities}}}\\[1ex] % Increased font size
\Large \textit{\textcolor{white}{First Author}}\textsuperscript{\textcolor{white}{1}}, \textit{\textcolor{white}{Second Author}}\textsuperscript{\textcolor{white}{1}}, \textit{\textcolor{white}{Corresponding Author}}\textsuperscript{\textcolor{white}{1*}}\\
\textit{\textsuperscript{\textcolor{white}{1}}\textcolor{white}{Department of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh}}\\
\textit{\textsuperscript{\textcolor{white}{*}}\textcolor{white}{Corresponding author: example-phy@sust.edu}}
\vspace{0em} % Add vertical space
\end{center}
\begin{center}
\begin{tikzpicture}[remember picture,overlay]
% \node [anchor=north west, inner sep=0cm] at ([xshift=4cm,yshift=-5cm]current page.north west)
% {\includegraphics[width=6cm,height=6cm]{logo.png}}; % Adjust position and image
\node [anchor=north east, inner sep=0cm] at ([xshift=-2cm,yshift=-4cm]current page.north east)
{\includegraphics[width=8cm,height=8cm]{logo.png}}; % Adjust position and image
\end{tikzpicture}
\end{center}
\end{minipage}
}
\end{center}
\vspace{-0.8cm}
% Abstract
\coloredsection{vibrantblue!60!white}{Abstract}{}
\coloredsubsection{vibrantblue!10!white}{
\lipsum[1]
\\
\textbf{\Large Keywords:}\textbf{ Norbixin; Z-scan Technique; Third-order Optical Nonlinearity; Nonlinear Optics;}
\vspace{-1em}
}
\begin{multicols}{2} % Two columns
\coloredsection{highlightgreen!60!white}{Introduction}{}
\coloredsubsection{highlightgreen!10!white}{
\begin{minipage}[t]{0.49\linewidth}
\textbf{Two-photon absorption (2PA)} \\
\begin{itemize}
\item[\squareicon{red}] \lipsum[2]
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}[t]{0.49\linewidth}
\textbf{Three-photon absorption (3PA)} \\
\begin{itemize}
\item[\squareicon{red}] \lipsum[2]
\end{itemize}
\end{minipage}
}
% Objectives
\coloredsection{accentorange!80!white}{Objectives}{}
\coloredsubsection{accentorange!10!white}{
\begin{minipage}[t]{\linewidth}
\textbf{The aim of this Research is to :} \\
\begin{itemize}
\item[\squareicon{red}] Determine the process of absorption.
\end{itemize}
\end{minipage}
}
% Methodology
\coloredsection{highlightgreen!60!white}{Methodology}{}
\coloredsubsection{highlightgreen!10!white}{
% Methodology content here
\begin{minipage}[t]{\linewidth}
\begin{Box3}{}
\begin{itemize}
\item[\circleicon{red}] Higher order nonlinearity OA transmission [5]:
\begin{equation}
\displaystyle T_{mPA}(z) = 1-\displaystyle\frac{\alpha_m I_0^{m-1} L_{\text{eff}}^{(m)}}{(1 + {z^2/z_0^2})^{m-1}} \frac{1}{m^{3/2}}
\end{equation}
\item[\circleicon{blue}] Normalized Transmittance at (\(z=0\)) determined from equation (1).
\begin{equation}
\displaystyle T_{2PA}= 1-\displaystyle{\alpha_{2}I_{0}L^{(2)}_{\text{eff}}}/{2^{3/2}}
\end{equation}
\begin{equation}
\displaystyle T_{3PA} = 1 - \displaystyle{\displaystyle \alpha_{3}I_{0}^{2}L^{(3)}_{\text{eff}}}/{3^{3/2}}
\end{equation}
\item[\circleicon{highlightgreen}] $\chi^2$ is calculated by
\begin{equation}
\chi^2 = \displaystyle {\sum \frac{(O_i - E_i)^2}{E_i}}
\end{equation}
\item[\circleicon{black}] Null Hypothesis [$\text{H}_0$:] Observed non-linearity due to 2PA alone.
\item[\circleicon{accentorange}] Alternative Hypothesis [$\text{H}_1$:] Non-linearity suggests 3PA.
\end{itemize}
\tcblower
\begin{tcolorbox}[colback=white!80!accentorange,colframe=white!0!red,width=\linewidth]
$m$ $\rightarrow$ the order of absorption\\
${I_0}$ $\rightarrow$ laser incident intensity\\
\(L_{\text{eff}}^{(m)} = \displaystyle\frac{1 - \exp\left(-(m-1)\alpha_0 L\right)}{(m-1)\alpha_0} \)\\
${z_0}$ $\rightarrow$ Rayleigh length
\end{tcolorbox}
\begin{tcolorbox}[colback=white!80!vibrantblue,colframe=white!10!blue,width=\linewidth]
${\alpha_0}$ $\rightarrow$ linear absorption coefficient\\
${\alpha_2}$ $\rightarrow$ 2PA coefficient \\
${\alpha_3}$ $\rightarrow$ 3PA coefficient \\
\end{tcolorbox}
\begin{tcolorbox}[colback=white!80!highlightgreen,colframe=white!10!green,width=\linewidth]
${O_i}$ $\rightarrow$ observed value in category $i$\\
${E_i}$ $\rightarrow$ expected value in category $i$ (from model) \\
\end{tcolorbox}
\end{Box3}
\end{minipage}
}
\end{multicols}
% % \clearpage
% \begin{multicols}{2} % Two columns
\coloredsection{lightgray!60!white}{Results and Analyses}{}
\coloredsubsection{lightgray!10!white}{
\begin{minipage}[t]{\linewidth}
\begin{Box1}{}
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{least1.png}
{\fontsize{35pt}{35pt}\selectfont Figure 1: The Open Aperture Z-scan profiles with least square method of the material at different intensities.}
\label{fig:least1}
\end{figure}
\tcblower
\begin{tcolorbox}
[colback=white!60!lightgray,colframe=white!20!red]
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{chsquare.png}
{\fontsize{35pt}{35pt}\selectfont Figure 3: Comparison of $\chi^2$ under varying intensity for 2PA and 3PA.}
\label{fig:absorption}
\end{figure}
\end{tcolorbox}
\end{Box1}
\begin{Box1}{}
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{abimag1.png}
{\fontsize{35pt}{35pt}\selectfont Figure 2: The Open Aperture Z-scan profiles with Eq$^n$-(2) and (3) of the material at different intensities.}
\label{fig:absorption1}
\end{figure}
\tcblower
\begin{tcolorbox}
[colback=white!60!lightgray,colframe=white!20!red]
\begin{table}[H]
\begin{longtable}{cccccccccc}
\caption{{\fontsize{35pt}{35pt}\selectfont Calculations of $\chi^2$, two ($\alpha_2$) and three ($\alpha_3$)-photon absorption coefficients.}}\\
\toprule
$I_0$ & \multicolumn{2}{c}{$\chi^2$ (2PA)} & \multicolumn{2}{c}{$\chi^2$ (3PA)} & \multicolumn{2}{c}{$\alpha_2$ (cm/W)} & \multicolumn{2}{c}{$\alpha_3$ (cm$^3$/W$^2$)}\\
\cmidrule(lr){2-3} \cmidrule(lr){4-5} \cmidrule(lr){6-7} \cmidrule(lr){8-9}
(GW/cm$^{2}$) & L.S.M & Eq$^n$-(2) & L.S.M & Eq$^n$-(3) & L.S.M & Eq$^n$-(2) & L.S.M & Eq$^n$-(3) \\
& & & & & ($\times 10^{-13}$) & ($\times 10^{-23}$) & ($\times 10^{-13}$) & ($\times 10^{-23}$)\\
\midrule
\endfirsthead
\multicolumn{10}{c}%
{{\tablename\ \thetable{} -- continued from previous page}} \\
\toprule
$I_0$ & \multicolumn{2}{c}{$\chi^2$ (2PA)} & \multicolumn{2}{c}{$\chi^2$ (3PA)} & \multicolumn{2}{c}{$\alpha_2$ (cm/W)} & \multicolumn{2}{c}{$\alpha_3$ (cm$^3$/W$^2$)}\\
\cmidrule(lr){2-3} \cmidrule(lr){4-5} \cmidrule(lr){6-7} \cmidrule(lr){8-9}
& Fit & Eq$^n$-(2) & Fit & Eq$^n$-(3) & Fit & Eq$^n$-(2) & Fit & Eq$^n$-(3) \\
& & & & & ($\times 10^{-13}$) & ($\times 10^{-23}$) & ($\times 10^{-13}$) & ($\times 10^{-23}$)\\
\midrule
\endhead
\midrule \multicolumn{10}{r}{{Continued on next page}} \\ \bottomrule
\endfoot
\bottomrule
\endlastfoot
129 & 0.0025 & 0.0149 & 0.0019 & 0.0021 & 1.08 & 0.56 & 1.35 & 8.10 \\
249 & 0.0273 & 0.1497 & 0.0187 & 0.0341 & 4.42 & 1.23 & 2.25 & 9.10 \\
309 & 0.0731 & 0.4429 & 0.0514 & 0.0795 & 4.71 & 1.47 & 1.98 & 8.78\\
339 & 0.0966 & 0.5297 & 0.0641 & 0.1128 & 5.58 & 1.59 & 2.12 & 8.61 \\
369 & 0.1281 & 0.7170 & 0.0880 & 0.1557 & 6.06 & 1.68 & 2.07 & 8.36 \\
\bottomrule
\end{longtable}
\end{table}
\end{tcolorbox}
\end{Box1}
\end{minipage}
}
\begin{multicols}{2}
% Conclusions
\coloredsection{accentorange!80!white}{Summary}{}
\coloredsubsection{accentorange!10!white}{
\begin{minipage}[t]{\linewidth}
\begin{itemize}
\item[\circleicon{blue}] \lipsum[4]
\end{itemize}
\end{minipage}
}
\vspace{1cm}
% References
\coloredsection{lightgray!50!white}{References}{}
\coloredsubsection{lightgray!80!white}{
\begin{minipage}[t]{\linewidth}
% % References content here
% \bibliographystyle{unsrt}
% \bibliography{name}
\begin{enumerate}
\item Brito e Silva, N. J., et al. (2022). Third- and fifth-order optical nonlinearities of norbixin. \textit{Results in Optics}, \textbf{6}, 100205.
\end{enumerate}
\end{minipage}
}
\end{multicols}
% Acknowledgements
\coloredsection{vibrantblue!60!white}{Acknowledgements}{}
\vspace{0cm}
\coloredsubsection{vibrantblue!10!white}{
\Large I would like to acknowledge the professors, staff, and students of the Nonlinear Optics Research and Bio-Optics Research Laboratory who provided support during this work.}
% \textit{Finally, I am very thankful to my wonderful friend \textbf{ Md. Fazle Rabbi Khan} who was beside me all the time, encouraging and inspiring me.}
\coloredsubsection{red!50!white}{
\begin{minipage}[t]{\linewidth}
% \colorbox{highlightgreen!10!white}{%
% \begin{minipage}{\textwidth}
\begin{center}{\Large
\textit{National Conference on Physics for the 21st Century}\\[1ex]
\textit{May 18, 2024 } | \textit{Physics Discipline, University name.}}
\end{center}
\end{minipage}
}
\end{document}